Contents lists available at SciVerse ScienceDirect



Earth and Planetary Science Letters



journal homepage: www.elsevier.com/locate/epsl

# Two-stage dissociation in MgSiO<sub>3</sub> post-perovskite

# Koichiro Umemoto<sup>a,\*</sup>, Renata M. Wentzcovitch<sup>b</sup>

<sup>a</sup> Department of Geology and Geophysics, University of Minnesota, 3 421 Washington Ave 4 SE, Minneapolis, MN 55455, USA

<sup>b</sup> Minnesota Supercomputing Institute and Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 7 55455, USA

#### ARTICLE INFO

Article history: Received 26 May 2011 Received in revised form 8 September 2011 Accepted 21 September 2011 Available online 20 October 2011

Editor: L. Stixrude

Keywords: pressure-induced phase transition postperovskite super-Earth 10 solar giants first principles

#### 1. Introduction

Since the discovery of MgSiO<sub>3</sub> post-perovskite (PPV) at conditions similar to those found near the core-mantle boundary (CMB) of the Earth (Murakami et al., 2004; Oganov and Ono, 2004; Tsuchiya et al., 2004), the fate of PPV under further compression has been a puzzling question. The significance of this question has increased greatly after several exoplanets with masses of a few to 10  $M_{\oplus}$  ( $M_{\oplus}$ : Earth mass) were identified (Batalha et al., 2011; Beaulieu et al., 2006; Charbonneau et al., 2009; Leger et al., 2009; Lissauer et al., 2011: Mayor et al., 2009: Oueloz et al., 2009: Rivera et al., 2005: Udry et al., 2007). Several of these planets are expected to be Earthlike, i.e., terrestrial, because of their estimated high densities. These exoplanets are frequently referred to as super-Earths. Valencia et al. calculated interior pressure-temperature profiles of super-Earths with masses of 1 to 10  $M_{\oplus}$  (Valencia et al., 2006). Sotin et al. also calculated them for super-Earths and for ocean exoplanets with 50% H<sub>2</sub>O (Sotin et al., 2007). These calculations revealed that pressure and temperature in these exoplanets should be considerably higher than those in Earth, making the fate of MgSiO<sub>3</sub> at higher pressures a question of practical relevance for modeling these planets. In this context, MgSiO<sub>3</sub> PPV was predicted by first principles to dissociate into CsCl-type MgO and cotunnite-type SiO<sub>2</sub> at ~1 TPa (Umemoto et al., 2006a). This prediction was based on the assumption that MgSiO<sub>3</sub> might dissociate into MgO and SiO<sub>2</sub>. However, some experiments have recently reported

## ABSTRACT

The fate of MgSiO<sub>3</sub> post-perovskite under TPa pressures is key information for understanding and modeling interiors of super-Earths-type exoplanets and solar giants' cores. Here, we report a dissociation of MgSiO<sub>3</sub> post-perovskite into CsCl-type MgO and P2<sub>1</sub>/c-type MgSi<sub>2</sub>O<sub>5</sub> at ~0.9 TPa obtained by first principles calculations. P2<sub>1</sub>/c-type MgSi<sub>2</sub>O<sub>5</sub> should dissociate further into CsCl-type MgO and Fe<sub>2</sub>P-type SiO<sub>2</sub> at ~2.1 TPa. The first dissociation should occur in all solar giants and heavy super-Earths, while the second one should occur only in Jupiter and larger exoplanets. Both dissociations are endothermic and have large negative Clapeyron slopes. If the first dissociation should occur in the middle of a silicate mantle, it could promote mantle layering. We provide essential thermodynamic properties of P2<sub>1</sub>/c-type MgSi<sub>2</sub>O<sub>5</sub> for modeling interiors of super-Earths.

© 2011 Elsevier B.V. All rights reserved.

other types of dissociation in ABO<sub>3</sub> perovskites – where A and B are transition-metal atoms – into AO and  $AB_2O_5$  (Okada et al., 2010; Wu et al., 2009). These findings suggested the possibility that MgSiO<sub>3</sub> PPV might not dissociate directly into MgO and SiO<sub>2</sub>.

In the present paper, we predict the dissociation of MgSiO<sub>3</sub> PPV into CsCl-type MgO and  $P_{2_1/c}$ -type MgSi<sub>2</sub>O<sub>5</sub>. To our knowledge, this  $P_{2_1/c}$ -type structure has not been identified experimentally in other substances so far. Furthermore,  $P_{2_1/c}$ -type MgSi<sub>2</sub>O<sub>5</sub> is found to dissociate into CsCl-type MgO and Fe<sub>2</sub>P-type SiO<sub>2</sub> under further compression. We also discuss whether or not the first and the second dissociations may occur in the cores of the solar giantsand in super-Earths. Thermodynamic quantities essential for modeling interiors of super-Earths are provided.

#### 2. Computational method

Calculations were performed using the local-density approximation (LDA) (Ceperley and Alder, 1980; Perdew and Zunger, 1981). All pseudopotentials were generated by Vanderbilt's method (Vanderbilt, 1990). The valence electronic configurations and cutoff radii were the same as used in (Umemoto et al., 2006a). The plane-wave cutoff energy was 400 Ry. We used variable-cell-shape molecular dynamics (Wentzcovitch, 1991; Wentzcovitch et al., 1993) for structural optimization under arbitrary pressure. Dynamical matrices were computed using density functional perturbation theory (Baroni et al., 2001; Giannozzi et al., 1991). We computed the vibrational contribution to the free energies within quasiharmonic approximation (QHA) (Carrier et al., 2008; Wallace, 1972). **k**-point grid for electronic-structure calculations and **q**-point grid for QHA were  $(6 \times 6 \times 2, 12 \times 12 \times 10)$  for MgSiO<sub>3</sub> PPV,  $(8 \times 8 \times 8,$ 

<sup>\*</sup> Corresponding author. Fax: +1 612 626 7246.

*E-mail addresses*: umemo001@umn.edu (K. Umemoto), wentz002@umn.edu (R.M. Wentzcovitch).

<sup>0012-821</sup>X/\$ - see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.epsl.2011.09.032

16×16×16) for CsCl-type MgO, (4×4×6,16×16×16) for Fe<sub>2</sub>P-type SiO<sub>2</sub>, and (4×2×2,10×8×10) for P2<sub>1</sub>/c-type MgSi<sub>2</sub>O<sub>5</sub>.

#### 3. Results and discussion

To investigate the dissociation, we need to know potential highpressure forms of MgO, SiO<sub>2</sub>, and MgSi<sub>2</sub>O<sub>5</sub>. There are no experimental studies for these oxides at extreme dissociation pressures. For MgO, the high-pressure form is assumed to be CsCl-type. The calculated pressure for the NaCl-type-to-CsCl-type transition is 0.53 TPa, consistent with other first-principles calculations (Karki et al., 1997; Mehl et al., 1988; Oganov et al., 2003; Wu et al., 2008). Very recently, the Fe<sub>2</sub>P-type phase was predicted to be a post-pyrite phase of SiO<sub>2</sub> beyond 0.69 TPa (Tsuchiya and Tsuchiya, 2011; Wu et al., 2011) at lower temperatures.

To predict the stable phase of  $MgSi_2O_5$ , we start with the structure of high-pressure CaGe<sub>2</sub>O<sub>5</sub> (post-titanite) (Nemeth et al., 2007) with space group Pbam. There are two types of germanium in this structure, one six-fold and one five-fold coordinated. Germanium octahedra share edges and calcium atoms are eight-fold coordinated in dicapped triangular prisms. Hence, post-titanite and PPV structures have common features, despite having different number of atoms per formula unit. Fig. 1(a) and (b) shows structures of Pbam-type MgSi<sub>2</sub>O<sub>5</sub> optimized at 0 and 1 TPa. Under compression, cation-oxygen connectivity changes clearly; coordination number of Si2 increases from 5 to 8. Pbam-type  $MgSi_2O_5$  is dynamically unstable, since there are soft modes with imaginary frequencies at  $\Gamma$  and Y points (Fig. 2). Reoptimizations after applying atomic displacements corresponding to each soft mode reveal that the soft mode at the  $\Gamma$  point leads to the lowest-enthalpy structure (Fig. 1(c)). Across this transformation, only the two-fold screw axis along the *a* axis and the *b* glide plane perpendicular to the *a* axis remain. Then the symmetry is reduced from *Pbam* to its subgroup,  $P2_1/b11$ . The  $P2_1/b11$  setting is not standard. Its symmetrically-equivalent standard setting is  $P2_1/c$  (i.e.,  $P12_1/c1$ ). Hereafter, we refer to the new phase as  $P2_1/c$ MgSi<sub>2</sub> $O_5$ . Besides this  $P2_1/c$  phase, we also considered the structures of P-1-type and A2/a-type CaSi<sub>2</sub>O<sub>5</sub> (Angel, 1997; Angel et al., 1996),

Bbmm-type MgTi<sub>2</sub>O<sub>5</sub> (Yang and Hazen, 1998), C2/c-type V<sub>3</sub>O<sub>5</sub> (Armbruster et al., 2009), and C2/c-type Fe<sub>1+ $\delta$ </sub>Ti<sub>2- $\delta$ </sub>O<sub>5</sub> (Wu et al., 2009). Enthalpy calculations clarified that these phases are metastable with respect to the *P*2<sub>1</sub>/*c* phase (Fig. 3). Therefore, the *P*2<sub>1</sub>/*c* phase is the most probable candidate form of MgSi<sub>2</sub>O<sub>5</sub> at high pressures. Structural parameters of the *P*2<sub>1</sub>/*c* phase is monoclinic,  $\beta$ , the angle between *a* and *c* axes, is very close to 90°. Thus, the monoclinic distortion from the *Pbam* orthorhombic cell is very small.

Now we have the necessary ingredients to discuss the dissociation of MgSiO<sub>3</sub> PPV. Fig. 4 shows MgSiO<sub>3</sub> PPV should dissociate into CsCltype MgO and  $P2_1/c$ -type MgSi<sub>2</sub>O<sub>5</sub> at 0.90 TPa. This dissociation pressure is 0.21 TPa lower than that of the direct dissociation of MgSiO<sub>3</sub> into MgO and SiO<sub>2</sub>. It is also seen that P2<sub>1</sub>/c-type MgSi<sub>2</sub>O<sub>5</sub> must dissociate into CsCl-type MgO and Fe<sub>2</sub>P-type SiO<sub>2</sub> at 2.10 TPa. Silicon coordination numbers increase across both dissociations: 6 in MgSiO<sub>3</sub> PPV, 7 and 8 in P2<sub>1</sub>/c-type MgSi<sub>2</sub>O<sub>5</sub>, and 9 in Fe<sub>2</sub>P-type SiO<sub>2</sub>. Correspondingly, volume reduces by 2.3% (0.5%) across the first (second) dissociation. We did not find a transition to any post-PPV crystalline phase with MgSiO<sub>3</sub> formula unit. The  $U_2S_3$ -type phase, a potential post-PPV candidate (Umemoto and Wentzcovitch, 2006, 2008), always has higher enthalpy than those of aggregated dissociation products. Dissociation pressures by PBE-type generalized-gradient approximation (GGA) (Perdew et al., 1981) are 0.89 and 2.04 TPa for the first and the second dissociation. They are slightly smaller than LDA results, which contrasts with the usual tendency. The differences between LDA and GGA are small: about 1% (3%) for the first (second) dissociation.

Fig. 5 shows the dissociation boundaries of MgSiO<sub>3</sub> calculated using the QHA. In the solar giants, MgSiO<sub>3</sub> PPV should not survive. In Saturn, Uranus, and Neptune, MgO and MgSi<sub>2</sub>O<sub>5</sub> are expected to occur in their dense cores. In Jupiter, MgSi<sub>2</sub>O<sub>5</sub> should be dissociated into MgO and SiO<sub>2</sub>. For super-Earths and ocean exoplanets with 1–10  $M_{\oplus}$ , internal pressure and temperature have been estimated (Sotin et al., 2007; Valencia et al., 2006). According to these estimations and dissociation phase boundaries, MgSiO<sub>3</sub> PPV should survive in super-Earths with masses smaller than ~7 $M_{\oplus}$ . The first dissociation should occur only



Fig. 1. Crystal structures of (a) *Pbam*-type MgSi<sub>2</sub>O<sub>5</sub> at 0 GPa, (b) at 1 TPa, and (c) *P*2<sub>1</sub>/*c*-type at 1 TPa. (d) Bonglengths (Å) between cations and oxygens in *P*2<sub>1</sub>/*c*-type MgSi<sub>2</sub>O<sub>5</sub>. Yellow, blue, light blue, and red spheres denote Mg, Si<sub>1</sub>, Si<sub>2</sub>, and O atoms.





**Fig. 3.** Relative enthalpies of several candidates of  $MgSi_2O_5$  with respect to the *Pbam*type phase. All candidates are dynamically unstable at 1 TPa. Arrows denote enthalpy reduction by reoptimization after applying atomic displacements corresponding to soft modes.

in larger super-Earths, but not the second one. In ocean exoplanets, the first dissociation may occur when their masses are larger than  $\sim 8M_{\oplus}$ . Therefore, MgSiO<sub>3</sub> PPV should dissociate into MgO and MgSi<sub>2</sub>O<sub>5</sub> in GJ876d (Rivera et al., 2005) but should not in CoRoT-7b (Leger et al., 2009; Queloz et al., 2009), GJ1214b (Charbonneau et al., 2009), Kepler-10b (Batalha et al., 2011), nor Kepler-11b (Lissauer et al., 2011). Thermodynamic properties are fundamental for modeling the internal state of these planets and they are provided up to 6000 K in Table 2.

Both dissociations are endothermic, because their phase boundaries have negative Clapeyron slopes: -12 (-31) MPa/K at 5000 K and -20 (-38) MPa/K at 10,000 K in the first (second) dissociation. These can be explained by changes in vibrational density of states.

# Table 1

Structural parameters of  $P2_1/c$ -type MgSi<sub>2</sub>O<sub>5</sub>. Wyckoff positions of all atoms are 4e: (x,y,z), (-x,y+1/2,-z+1/2), (-x,-y,-z), and (x,-y+1/2,z+1/2).

| (a,b,c) (Å)<br>$\beta$ (°) | (4.429,4.031,6.179)<br>89.68 |
|----------------------------|------------------------------|
| Mg                         | (0.5054, 0.6686, 0.0638)     |
| Si <sub>1</sub>            | (0.2580, 0.0699, 0.9916)     |
| Si <sub>2</sub>            | (0.9966, 0.0498, 0.6757)     |
| O <sub>1</sub>             | (0.2411, 0.1748, 0.2203)     |
| 0 <sub>2</sub>             | (0.2351, 0.8453, 0.8052)     |
| O <sub>3</sub>             | (0.2294, 0.0322, 0.5002)     |
| O <sub>4</sub>             | (0.5431, 0.1901, 0.9209)     |
| O <sub>5</sub>             | (0.0393, 0.6735, 0.5855)     |



**Fig. 4.** Relative enthalpies of aggregation of CsCl-type MgO and  $P2_1/c$ -type MgSi<sub>2</sub>O<sub>5</sub>, CsCl-type MgO and Fe<sub>2</sub>P-type SiO<sub>2</sub>, and U<sub>2</sub>S<sub>3</sub>-type MgSiO<sub>3</sub> with respect to MgSiO<sub>3</sub> PPV.

Across both dissociations, while volume decreases Si–O bond lengths and Si coordination numbers increase. Longer bonds lead to smaller optic phonon frequencies and larger vibrational entropy. Therefore, aggregated dissociation products have larger stability fields at higher temperatures, resulting in a negative Clapeyron slope (Navrotsky, 1980). An endothermic phase transition can affect mantle dynamics in exoplanets with silicate mantle. Dissociations with large negative Clapeyron slopes in the middle of a silicate mantle can in principle promote layering (Christensen and Yuen, 1985; Peltier and Solheim, 1992; Tackley, 1995). However, other factors, such as pressure and temperature dependent properties, might conspire against layered convection. Change of viscosity across the dissociation could also affect significantly mantle dynamics in super-Earths (Karato, 2011; van den Berg et al., 2010). Present results are just a starting point for considering these effects.

The two-stage dissociation of  $MgSiO_3$  PPV reported here may also help to solve open questions concerning the high-pressure behavior of ABX<sub>3</sub> compounds. The dissociation of NaMgF<sub>3</sub> PPV, a low-pressure analog of MgSiO<sub>3</sub> was predicted to happen at ~40 GPa (Umemoto et al., 2006b), but it has not been observed experimentally. Moreover, there are inconsistencies between experiments; while (Martin



**Fig. 5.** Phase diagram showing the two-stage dissociation of MgSiO<sub>3</sub> PPV. Red spots denote estimated pressure–temperature conditions at core-envelope boundaries in the solar giants (Jupiter's condition, ~4 TPa and ~15,000? 20,000 K, is not shown here) (Guillot, 2004). Brown and light blue squares represent pressure–temperature conditions at CMB in terrestrial and ocean exoplanets (Sotin et al., 2007). Numbers in squares indicate the planet mass in units of Earth mass ( $M_{\oplus}$ ).Dashed phase boundary is the metastable boundary of the direct dissociation of MgSiO<sub>3</sub> into MgO and SiO<sub>2</sub>. A dot-dashed line denotes the limit of validity of the QHA (Tsuchiya et al., 2005).

#### Table 2

Thermodynamic properties of  $P2_1/c$ -type MgSi<sub>2</sub> $O_5$ : density ( $\rho$ ), thermal expansivity ( $\alpha$ ), isothermal bulk modulus ( $K_T$ ), adiabatic bulk modulus ( $K_S$ ), constant-volume heat capacity ( $C_V$ ), constant-pressure heat capacity ( $C_P$ ), and Grüneisen parameter ( $\gamma$ ). Values for the other phases will be available online at http://www.vlab.msi.umn.edu.

| P<br>(TPa) | ho (g/cm <sup>3</sup> ) | α<br>(10 <sup>-5</sup> /K) | <i>К<sub>Т</sub></i><br>(ТРа) | K <sub>S</sub><br>(TPa) | C <sub>V</sub><br>(J/mol/K) | C <sub>P</sub><br>(J/mol/K) | γ      |  |
|------------|-------------------------|----------------------------|-------------------------------|-------------------------|-----------------------------|-----------------------------|--------|--|
| 1000 K     |                         |                            |                               |                         |                             |                             |        |  |
| 0.4        | 7.3418                  | 0.5630                     | 1.5000                        | 1.5092                  | 170.5582                    | 171.5977                    | 1.0827 |  |
| 0.6        | 8.2219                  | 0.4354                     | 2.0594                        | 2.0689                  | 164.1819                    | 164.9443                    | 1.0664 |  |
| 0.8        | 8.9616                  | 0.3571                     | 2.6027                        | 2.6125                  | 158.5342                    | 159.1288                    | 1.0503 |  |
| 1.0        | 9.6104                  | 0.3033                     | 3.1350                        | 3.1448                  | 153.4502                    | 153.9319                    | 1.0350 |  |
| 1.2        | 10.1943                 | 0.2637                     | 3.6587                        | 3.6686                  | 148.8213                    | 149.2219                    | 1.0209 |  |
| 1.4        | 10.7290                 | 0.2332                     | 4.1756                        | 4.1854                  | 144.5712                    | 144.9111                    | 1.0080 |  |
| 1.6        | 11.2249                 | 0.2090                     | 4.6868                        | 4.6965                  | 140.6441                    | 140.9371                    | 0.9963 |  |
| 1.8        | 11.6890                 | 0.1894                     | 5.1931                        | 5.2028                  | 136.9974                    | 137.2533                    | 0.9860 |  |
| 2.0        | 12.1267                 | 0.1731                     | 5.6951                        | 5.7047                  | 133.5976                    | 133.8236                    | 0.9770 |  |
| 2.2        | 12.5419                 | 0.1595                     | 6.1933                        | 6.2028                  | 130.4179                    | 130.6194                    | 0.9693 |  |
| 2000 1/    |                         |                            |                               |                         |                             |                             |        |  |
| 2000 K     | 7 2074                  | 0.6206                     | 1 /017                        | 1 5012                  | 101 6095                    | 104 2006                    | 1 0721 |  |
| 0.4        | 8 1826                  | 0.0000                     | 2 0390                        | 2.0607                  | 189 7636                    | 191 7880                    | 1.0721 |  |
| 0.8        | 8 9258                  | 0.4241                     | 2.5811                        | 2.6041                  | 187 9332                    | 189 6029                    | 1.0001 |  |
| 1.0        | 9 5772                  | 0.3693                     | 3 1 1 2 4                     | 3 1362                  | 186 2020                    | 187 6253                    | 1.0348 |  |
| 1.2        | 10.1632                 | 0.3287                     | 3.6353                        | 3.6597                  | 184.5595                    | 185.8004                    | 1.0228 |  |
| 1.4        | 10.6997                 | 0.2972                     | 4.1515                        | 4.1765                  | 182.9956                    | 184.0959                    | 1.0116 |  |
| 1.6        | 11.1970                 | 0.2719                     | 4.6622                        | 4.6876                  | 181.5019                    | 182.4901                    | 1.0013 |  |
| 1.8        | 11.6624                 | 0.2511                     | 5.1680                        | 5.1938                  | 180.0710                    | 180.9681                    | 0.9920 |  |
| 2.0        | 12.1011                 | 0.2337                     | 5.6697                        | 5.6958                  | 178.6968                    | 179.5184                    | 0.9837 |  |
| 2.2        | 12.5173                 | 0.2189                     | 6.1677                        | 6.1941                  | 177.3742                    | 178.1323                    | 0.9763 |  |
|            |                         |                            |                               |                         |                             |                             |        |  |
| 3000 K     | 7 2500                  | 0.0477                     | 1 4020                        | 1 4022                  | 100 0225                    | 200 100 4                   | 1 0701 |  |
| 0.4        | 7.2008                  | 0.6477                     | 1.4028                        | 1.4933                  | 196.0335                    | 200.1094                    | 1.0701 |  |
| 0.0        | 0.1407                  | 0.3193                     | 2.0190                        | 2.0525                  | 193.1422                    | 196.5057                    | 1.0000 |  |
| 0.8        | 0.0072                  | 0.4405                     | 2,5598                        | 2.5952                  | 194.2009                    | 190.9785                    | 1.0479 |  |
| 1.0        | 10 1289                 | 0.3834                     | 3 6120                        | 3 6502                  | 192 6930                    | 194 7333                    | 1.0337 |  |
| 1.2        | 10,6669                 | 0.3130                     | 4 1274                        | 4 1667                  | 191 9435                    | 193 7695                    | 1 0131 |  |
| 1.6        | 11.1655                 | 0.2876                     | 4.6374                        | 4.6776                  | 191.2219                    | 192.8767                    | 1.0029 |  |
| 1.8        | 11.6320                 | 0.2667                     | 5.1428                        | 5.1837                  | 190.5254                    | 192.0405                    | 0.9937 |  |
| 2.0        | 12.0718                 | 0.2492                     | 5.6441                        | 5.6857                  | 189.8517                    | 191.2506                    | 0.9854 |  |
| 2.2        | 12.4887                 | 0.2344                     | 6.1417                        | 6.1840                  | 189.1988                    | 190.4997                    | 0.9780 |  |
| 1000 1     |                         |                            |                               |                         |                             |                             |        |  |
| 4000 K     | 7 2027                  | 0.0500                     | 1 4 4 4 0                     | 1 405 4                 | 107 5750                    | 202 1220                    | 1 0000 |  |
| 0.4        | 20027                   | 0.0503                     | 1.4448                        | 1.4854                  | 197.5758                    | 203.1239                    | 1.0690 |  |
| 0.0        | 0.0902                  | 0.3271                     | 1,9995                        | 2.0440                  | 197.0095                    | 201.4745                    | 1.0002 |  |
| 1.0        | 9 5039                  | 0.3923                     | 3.0678                        | 2.3004                  | 196 1143                    | 199 3039                    | 1.0405 |  |
| 1.0        | 10 0937                 | 0.3513                     | 3 5888                        | 3 6405                  | 195 6650                    | 198 4833                    | 1.0303 |  |
| 1.4        | 10.6332                 | 0.3195                     | 4.1035                        | 4.1567                  | 195.2322                    | 197.7626                    | 1.0140 |  |
| 1.6        | 11.1331                 | 0.2940                     | 4.6129                        | 4.6674                  | 194.8142                    | 197.1145                    | 1.0040 |  |
| 1.8        | 11.6006                 | 0.2731                     | 5.1177                        | 5.1733                  | 194.4097                    | 196.5219                    | 0.9948 |  |
| 2.0        | 12.0413                 | 0.2555                     | 5.6185                        | 5.6752                  | 194.0172                    | 195.9731                    | 0.9864 |  |
| 2.2        | 12.4591                 | 0.2405                     | 6.1158                        | 6.1734                  | 193.6359                    | 195.4598                    | 0.9790 |  |
|            |                         |                            |                               |                         |                             |                             |        |  |
| 5000 K     | 7 1563                  | 0.6625                     | 1 / 270                       | 1 4776                  | 108 2012                    | 205 3160                    | 1 0695 |  |
| 0.4        | 8 0554                  | 0.5321                     | 1.4270                        | 2 0357                  | 197,9662                    | 203.5100                    | 1.0055 |  |
| 0.0        | 8 8081                  | 0.4518                     | 2 5179                        | 2.0337                  | 197.5002                    | 203.3321                    | 1.0000 |  |
| 1.0        | 9 4665                  | 0 3963                     | 3 0458                        | 3 1084                  | 197.3507                    | 201 4071                    | 1.0373 |  |
| 1.2        | 10.0581                 | 0.3551                     | 3.5659                        | 3.6308                  | 197.0603                    | 200.6495                    | 1.0258 |  |
| 1.4        | 10.5991                 | 0.3232                     | 4.0798                        | 4.1467                  | 196.7800                    | 200.0069                    | 1.0149 |  |
| 1.6        | 11.1002                 | 0.2975                     | 4.5885                        | 4.6571                  | 196.5089                    | 199.4462                    | 1.0048 |  |
| 1.8        | 11.5688                 | 0.2765                     | 5.0927                        | 5.1628                  | 196.2461                    | 198.9467                    | 0.9956 |  |
| 2.0        | 12.0104                 | 0.2588                     | 5.5931                        | 5.6645                  | 195.9908                    | 198.4945                    | 0.9872 |  |
| 2.2        | 12.4289                 | 0.2438                     | 6.0900                        | 6.1627                  | 195.7424                    | 198.0800                    | 0.9797 |  |
| C000 7     |                         |                            |                               |                         |                             |                             |        |  |
| 6000 K     | 7 1000                  | 0.6676                     | 1 4005                        | 1 4600                  | 108 6790                    | 207 1011                    | 1 0606 |  |
| 0.4        | 7.1089<br>8.0125        | 0.0070                     | 1.4095                        | 1.4099<br>2.0274        | 198.0/89                    | 207.1911                    | 1.0090 |  |
| 0.8        | 8 7682                  | 0.4551                     | 2,4972                        | 2.5688                  | 198 2350                    | 203.2252                    | 1 0498 |  |
| 1.0        | 9,4289                  | 0.3992                     | 3.0240                        | 3.0992                  | 198.0247                    | 202,9483                    | 1.0380 |  |
| 1.2        | 10.0223                 | 0.3578                     | 3.5431                        | 3.6212                  | 197.8220                    | 202.1813                    | 1.0265 |  |
| 1.4        | 10.5647                 | 0.3256                     | 4.0562                        | 4.1367                  | 197.6261                    | 201.5478                    | 1.0157 |  |
| 1.6        | 11.0671                 | 0.2999                     | 4.5642                        | 4.6468                  | 197.4365                    | 201.0084                    | 1.0056 |  |
| 1.8        | 11.5367                 | 0.2787                     | 5.0679                        | 5.1523                  | 197.2526                    | 200.5384                    | 0.9963 |  |
| 2.0        | 11.9792                 | 0.2609                     | 5.5678                        | 5.6539                  | 197.0738                    | 200.1217                    | 0.9879 |  |
| 2.2        | 12.3985                 | 0.2458                     | 6.0643                        | 6.1520                  | 196.8997                    | 199.7469                    | 0.9804 |  |

et al., (2006) reported a post-PPV transition to a "N-phase", whose structure has not been identified yet, other experiments showed that the PPV phase remained stable (Grocholski et al., 2010; Hustoft et al., 2008). The new dissociation found here might shed light on this inconsistency. Very recently, MnTiO<sub>3</sub> perovskite was reported to dissociate into MnO and MnTi<sub>2</sub>O<sub>5</sub> (Okada et al., 2010). Although MnTi<sub>2</sub>O<sub>5</sub> was expected to be orthorhombic, its detailed structure has not been identified yet. As showed here,  $P2_1/c$ -type MgSi<sub>2</sub>O<sub>5</sub> has a small monoclinic distortionfrom the orthorhombic cell. We expect the structure of  $P2_1/c$ -type MgSi<sub>2</sub>O<sub>5</sub> to be closely related to that of MnTi<sub>2</sub>O<sub>5</sub>.

## Acknowledgments

We would like to thank Professor D. A. Yuen for fruitful discussions. Calculations have been done using the Quantum-ESPRESSO package (Giannozzi et al., 2009) and VLab software (da Silveira et al., 2008). Research was supported by NSF grants EAR-1047629. Computations were performed at the Minnesota Supercomputing Institute and at the Laboratory for Computational Science and Engineering at the University of Minnesota.

#### References

- Angel, R.J., Ross, N.L., Seifert, F., Fliervoet, T.F., 1996. Structural characterization of pentacoordinate silicon in a calcium silicate. Nature 384, 441–444.
- Angel, R.J., 1997. Transformation of fivefold-coordinated silicon to octahedral silicon in calcium silicate, CaSi<sub>2</sub>O<sub>5</sub>. Am. Mineral. 82, 836–839.
- Armbruster, T., Galuskin, E.V., Reznitsky, L.Z., Sklyarov, E.V., 2009. X-ray structural investigation of the oxyvanite (V<sub>3</sub>O<sub>5</sub>)-berdesinskiite (V<sub>2</sub>TiO<sub>5</sub>) series: V<sup>4+</sup> substituting for octahedrally coordinated Ti<sup>4+</sup>. Eur. J. Mineral. 21, 885–891.
- Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P., 2001. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562.
- Batalha, N.M., et al., 2011. Kepler's First Rocky Planet: Kepler-10b. Astrophys. J. 729, 27. Beaulieu, J.P., et al., 2006. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439, 437–440.
- Carrier, P., Justo, J.F., Wentzcovitch, R.M., 2008. Quasiharmonic elastic constants corrected for deviatoric thermal stresses. Phys. Rev. B 78, 144302.
- Ceperley, D.M., Alder, B.J., 1980. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569.
- Charbonneau, D., et al., 2009. A super-Earth transiting a nearby low-mass star. Nature 462, 891.
- Christensen, U.R., Yuen, D.A., 1985. Layered convection induced by phase transitions. J. Geophys. Res. 90, 10291–10300.
- da Silveira, P.R.C., da Silva, C.R.S., Wentzcovitch, R.M., 2008. Metadata management for distributed first principles calculations in VLab–A collaborative cyberinfrastructure for materials computation. Comput. Phys. Commun. 178, 186–198.
- Giannozzi, P., de Gironcoli, S., Pavone, P., Baroni, S., 1991. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231–7242.
- Giannozzi, P., et al., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 http://www.quantum-espresso.org.
- Grocholski, B., Shim, S.H., Prakapenka, V.B., 2010. Stability of the MgSiO<sub>3</sub> analog NaMgF<sub>3</sub> and its implication for mantle structure in super-Earths. Geophys. Res. Lett. 37, L14204.
- Guillot, T., 2004. Probing the Giant Planets. Phys. Today 57, 63.
- Hustoft, J., Catalli, K., Shim, S.H., Kubo, A., Prakapenka, V.B., Kuntz, M., 2008. Equation of state of NaMgF<sub>3</sub> postperovskite: implication for the seismic velocity changes in the D" region. Geophys. Res. Lett. 35, L10309.
- Karato, S., 2011. Rheological structure of the mantle of a super-Earth: some insights from mineral physics. Icarus 212, 14–23.
- Karki, B.B., Stixrude, L., Clark, S.J., Warren, M.C., Ackland, G.J., Crain, J., 1997. Structure and elasticity of MgO at high pressure. Am. Mineral. 82, 51–60.
- Leger, A., et al., 2009. Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first super-Earth with measured radius. Astron. Astrophys. 506, 287–302.
- Lissauer, J.J., et al., 2011. A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470, 53–58.
- Martin, C.D., Crichton, W.A., Liu, H., Prakapenka, V., Chen, J., Parise, J.B., 2006. Phase transitions and compressibility of NaMgF<sub>3</sub> (Neighborite) in perovskite- and postperovskite-related structures. Geophys. Res. Lett. 33, L11305.
- Mayor, M., Udry, S., Lovis, C., Pepe, F., Queloz, D., Benz, W., Bertaux, J.L., Bouchy, F., Mordasini, C., Segransan, D., 2009. The HARPS search for southern extra-solar planets XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2  $M_{\oplus}$ ). Astron. Astrophys. 493, 639–644.
- Mehl, M.J., Cohen, R.E., Krakauer, H., 1988. Linearized augmented plane wave electronic structure calculations for MgO and CaO. J. Geophys. Res. 93, B8009–B8022.

Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y., 2004. Post-perovskite phase transition in MgSiO<sub>3</sub>. Science 304, 855-858.

Navrotsky, A., 1980. Lower mantle phase transitions may generally have negative pressure-temperature slopes. Geophys. Res. Lett. 7, 709–711.

- Nemeth, P., Leinenweber, K., Groy, T.L., Buseck, P.R., 2007. A new high-pressure CaGe<sub>2</sub>O<sub>5</sub> polymorph with 5- and 6-coordinated germanium. Am. Mineral. 92, 441–443.
- Oganov, A.R., Gillan, M.J., Price, G.D., 2003. Ab initio lattice dynamics and structural stability of MgO. J. Chem. Phys. 118, 10174-10182.
- Oganov, A.R., Ono, S., 2004. Theoretical and experimental evidence for a post-perovskite phase of MgSiO<sub>3</sub> in Earth's D" layer. Nature 430, 445–448.
- Okada, T., Yagi, T., Nishio-Hamane, D., 2010. High-pressure phase behavior of MnTiO3: decomposition of perovskite into MnO and MnTi<sub>2</sub>O<sub>5</sub>. Phys. Chem. Miner. 38, 251 - 258
- Peltier, W.R., Solheim, L.P., 1992. Mantle phase transitions and layered chaotic convection. Geophys. Res. Lett. 19, 321-324.
- Perdew, J.P., Zunger, A., 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048-5079.
- Perdew, J.P., Burke, K., Ernzerhof, M., 1981. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868.
- Queloz, D., et al., 2009. The CoRoT-7 planetary system: two orbiting super-Earths. Astron. Astrophys. 506, 303-319.
- Rivera, E.J., Lissauer, J.J., Butler, R.P., Marcy, G.W., Vogt, S.S., Fischer, D.A., Brown, T.M., Laughlin, G., Henry, G.W., 2005. A ~7.5M<sub>⊕</sub> Planet Orbiting the Nearby Star, GJ 876. Astrophys. J. 634, 625-640.
- Sotin, C., Grasset, O., Mocquet, A., 2007. Mass-radius for extrasolar Earth-like planets and ocean planets. Icarus 191, 337-351.
- Tackley, P.J., 1995. On the penetration of an endothermic phase transition by upwellings and downwellings. J. Geophys. Res. 100, 15477-15488.
- Tsuchiya, T., Tsuchiya, J., Umemoto, K., Wentzcovitch, R.M., 2004. Phase transition in MgSiO<sub>3</sub> perovskite in the earth's lower mantle. Earth Planet. Sci. Lett. 224, 241-248. Tsuchiya, J., Tsuchiya, T., Wentzcovitch, R.M., 2005. Vibrational and thermodynamic
- properties of MgSiO<sub>3</sub> post-perovskite. J. Geophys. Res. 110 (B2), B02204. Tsuchiya, T., Tsuchiya, J., 2011. Prediction of a hexagonal SiO<sub>2</sub> phase affecting stabilities of
- MgSiO<sub>3</sub> and CaSiO<sub>3</sub> at multimegabar pressures. Proc. Natl. Acad. Sci. 108, 1252–1255.

- Udry, S., Bonfils, X., Delfosse, X., Forveille, T., Mayor, M., Perrier, C., Bouchy, F., Lovis, C., Pepe, F., Queloz, D., Bertaux, J.L., 2007. The HARPS search for southern extra-solar planets XI. Super-Earths (5 and 8  $M_{\oplus}$ ) in a 3-planet system. Astron. Astrophys. 469 143-147
- Umemoto, K., Wentzcovitch, R.M., Allen, P.B., 2006a. Dissociation of MgSiO<sub>3</sub> in the cores of gas giants and terrestrial exoplanets. Science 311, 983-986.
- Umemoto, K., Wentzcovitch, R.M., Weidner, D.J., Parise, J.B., 2006b. NaMgF3: A low-pressure analog of MgSiO<sub>3</sub>. Geophys. Res. Lett. 33, L15304.
- Umemoto, K., Wentzcovitch, R.M., 2006. Potential ultrahigh pressure polymorphs of ABX<sub>3</sub>-type compounds. Phys. Rev. B 224105.
- Umemoto, K., Wentzcovitch, R.M., 2008. Prediction of an U<sub>2</sub>S<sub>3</sub>-type polymorph of Al<sub>2</sub>O<sub>3</sub> at 3.7 Mbar Proc Natl Acad Sci 6526-6530
- Valencia, D., O'Connell, R.J., Sasselov, D., 2006. Internal structure of massive terrestrial planets. Icarus 181, 545-554.
- van den Berg, A.P., Yuen, D.A., Beebe, G.L., Christiansen, M.D., 2010. The dynamical impact of electronic thermal conductivity on deep mantle convection of exosolar planets, Phys. Earth Planet, Inter, 178, 136-154.
- Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, R7892-R7895.
- Wallace, D., 1972. Thermodynamics of Crystals. Wiley, New York.
- Wentzcovitch, R.M., 1991. Invariant molecular-dynamics approach to structural phase transitions. Phys. Rev. B 44, 2358-2361.
- Wentzcovitch, R.M., Martins, J.L., Price, G.D., 1993. Ab initio molecular dynamics with variable cell shape: application to MgSiO<sub>3</sub>. Phys. Rev. Lett. 70, 3947-3950.
- Wu, Z., Wentzcovitch, R.M., Umemoto, K., Li, B., Hirose, K., Zheng, J.C., 2008. Pressurevolume-temperature relations in MgO: an ultrahigh pressure-temperature scale for planetary sciences applications. J. Geophys. Res. 113, B06204.
- Wu, X., Steinle-Neumann, G., Narygina, O., Kantor, I., McCammon, C., Prakapenka, V., Swamy, V., Dubrovinsky, L., 2009. High-pressure behavior of perovskite: FeTiO<sub>3</sub> dissociation into  $(Fe_{1-\delta}, Ti_{\delta})O$  and  $Fe_{1+\delta}Ti_{2-\delta}O_5$ . Phys. Rev. Lett. 103, 065503. Wu, S., Umemoto, K., Ji, M., Wang, C.Z., Ho, K.M., Wentzcovitch, R.M., 2011. Identification of
- post-pyrite phase transitions in SiO<sub>2</sub> by a genetic algorithm. Phys. Rev. B 83, 184102.
- Yang, H., Hazen, R.M., 1998. Crystal chemistry of cation order-disorder in pseudobrookite-type MgTi<sub>2</sub>O<sub>5</sub>. J. Solid State Chem. 138, 238-244.