The Phonon Quasiparticle Approach for Anharmonic Properties of Solids

Zhen Zhang

Applied Physics and Applied Mathematics

Acknowledgements

Renata Wentzcovitch Columbia University

Dong-Bo Zhang Beijing Normal University

Tao Sun University of Chinese Academy of Sciences

Extreme Science and Engineering Discovery Environment

This talk is based on these papers:

- [1] D.-B. Zhang *et al.*, PRL **112**, 058501 (2014).
- [2] T. Sun *et al.*, PRB **89**, 094109 (2014).
- [3] Y. Lu *et al.*, PRL **118**, 145702 (2017).
- [4] D.-B. Zhang et al., PRB 96, 100302(R) (2017).
- [5] Z. Zhang et al., Comput. Phys. Commun. 243, 110 (2019).
- [6] Z. Zhang et al., PRB 103, 104108 (2021).
- [7] Z. Zhang et al., PRB 103, 144103 (2021).
- [8] Z. Zhang et al., PRB 104, 184101 (2021).
- [9] Z. Zhang et al., PRB **106**, 054103 (2022).

Outline

- Introduction: Role of Lattice Anharmonicity in Materials Computation And Geophysics
- Method: Phonon Quasiparticle Approach
- Application to Si (Diamond Structure)
- Application to MgSiO₃ Pv/PPv (Weakly Anharmonic)
- Application to CaSiO₃ Pv (Strongly Anharmonic)
- Application to bcc/hcp Be (Strongly Anharmonic Metal)
- Hands-on: phq code

Lattice Anharmonicity in Real Space

Anharmonic

Role of Anharmonicity in Materials Computation

1. Free energy and thermodynamics including anharmonicity

- -- Phase transition
- -- Thermal expansivity
- -- Heat capacity
- -- Thermal elasticity

2. Lattice thermal conductivity

High T

Role of Anharmonicity in Geophysics

- Thermodynamic properties are essential for geodynamic modeling $(\alpha, C_V, C_P, K_T, K_S)$
- Accurate free energies are needed for determining phase boundary: seismic discontinuities
- Thermoelastic properties are needed for interpreting seismic tomography (c_{ij} , G, K_S , v_P , v_{ϕ} , v_S)

- Thermal conductivity (κ) of the lower mantle (LM) minerals

Ab initio methods to compute thermodynamic properties at high T

1. Perturbation theory + quasiharmonic approximation (QHA) $\left(\frac{\partial \omega}{\partial T}\right)_V = 0$

2. *Ab initio* molecular dynamics + thermodynamic integration (TI) Limited *N*

3. Phonon quasiparticle approach + phonon gas model

 $\widetilde{\omega} = \widetilde{\omega}(T), N \to \infty$

Ab initio methods to compute lattice thermal conductivity

1. Finite displacement method

- Explicitly express the higher-order interatomic force constants (IFCs).
- Higher-order IFCs are computationally heavy and may suffer from numerical errors and truncation issues.
- Considering only the 3^{rd} -order IFCs may overestimate the κ .
- Fail for strongly anharmonic systems with imaginary phonon frequencies without the renormalization of IFCs.

2. Phonon quasiparticle approach + relaxation time approximation (RTA)

- Does not explicitly express the higher-order IFCs.
- Easy to compute.
- In principle, anharmonicity is included to all orders in perturbation theory.
- Renormalization of harmonic IFCs is included.

Phonon quasiparticle approach + phonon gas model $(\widetilde{\omega}, \tau)$ $\Gamma = \frac{1}{2\tau}$ phonon quasiparticle: Harmonic approximation: $\left(\frac{\partial\omega}{\partial T}\right)_V = 0 \qquad \tau \to \infty$ **Consider anharmonicity:** $\widetilde{\omega} = \widetilde{\omega}(T) \qquad \tau \sim ps$ Phonon gas model: ħῶ Vibrational free energy: $F = U - TS_{min}$ $S_{vib} = k_B \sum_{i} [(n+1)\ln(n+1) - n\ln n]$ $n = [\exp(\hbar \tilde{\omega}/k_B T) - 1]^{-1}$

Phonon quasiparticle approach

Mode-projected Velocity Autocorrelation Function (VAF):

$$\langle V_{\mathbf{q}s}(0)V_{\mathbf{q}s}(t)\rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{0}^{\tau} V_{\mathbf{q}s}^{*}(t')V_{\mathbf{q}s}(t'+t)dt'$$

$$V_{\mathbf{q}s}(t) = \sum_{i=1}^{N} \sqrt{M_{i}} \mathbf{v}_{i}(t)e^{i\mathbf{q}\cdot\mathbf{R}_{i}} \cdot \hat{\mathbf{e}}_{\mathbf{q}s}^{i}$$
freell atoms
from branches
$$Ab \text{ initio molecular dynamics} \qquad Ab \text{ initio harmonic phonons}$$

i: 1, 2, ..., N supercell atom **q**: wave vector

s: 1, 2, ..., 3n phonon bra

Well-defined quasiparticle

$$\langle V_{\mathbf{q}s}(0)V_{\mathbf{q}s}(t)\rangle = A_{\mathbf{q}s}\cos(\widetilde{\omega}_{\mathbf{q}s}t)e^{-\Gamma_{\mathbf{q}s}t} \qquad G_{\mathbf{q}s}(\omega) = \left|\int_0^\infty \langle V_{\mathbf{q}s}(0)V_{\mathbf{q}s}(t)\rangle e^{i\omega t}dt\right|^2$$

T. Sun *et al.*, PRB **82**, 224304 (2010); D.-B. Zhang *et al.*, PRL **112**, 058501 (2014).

Well-defined quasiparticle

T. Sun *et al.*, PRB **82**, 224304 (2010); D.-B. Zhang *et al.*, PRL **112**, 058501 (2014).

VAF($\widetilde{\omega}, \tau$) = $A_{\mathbf{q}s} \cos(\widetilde{\omega}_{\mathbf{q}s}t) e^{-t/(2\tau_{\mathbf{q}s})}$

Effective harmonic dynamical matrix $[\hat{\mathbf{e}}_{\mathbf{q}}] = [\hat{\mathbf{e}}_{\mathbf{q}1}, \hat{\mathbf{e}}_{\mathbf{q}2}, \dots, \hat{\mathbf{e}}_{\mathbf{q}3n}] \qquad \Omega_{\mathbf{q}} = \operatorname{diag}[\widetilde{\omega}_{\mathbf{q}1}^2, \widetilde{\omega}_{\mathbf{q}2}^2, \dots, \widetilde{\omega}_{\mathbf{q}3n}^2]$ $\widetilde{D}(\mathbf{q}) = \widehat{\mathbf{e}}_{\mathbf{q}} \Omega_{\mathbf{q}} \widehat{\mathbf{e}}_{\mathbf{q}}^{\dagger}$ $\widetilde{\Phi}(\mathbf{r}) = \sum_{\mathbf{a}} \widetilde{D}(\mathbf{q}) e^{i\mathbf{q}\cdot\mathbf{r}}$ $\widetilde{D}(\mathbf{q}') = \sum_{\mathbf{r}} \widetilde{\Phi}(\mathbf{r}) e^{-i\mathbf{q}'\cdot\mathbf{r}}$ T-dependent phonon dispersion, VDoS, phonon velocity $v_{qs} = \frac{d\omega_{qs}}{d\sigma}$

Phonon gas model with *T*-dependent VDoS

$$S_{vib}(T) = k_B \sum_{\mathbf{q}s} \left[\left(n_{\mathbf{q}s} + 1 \right) \ln \left(n_{\mathbf{q}s} + 1 \right) - n_{\mathbf{q}s} \ln n_{\mathbf{q}s} \right]$$

$$n_{\mathbf{q}s} = \left[\exp(\hbar\widetilde{\omega}_{\mathbf{q}s}(T)/k_B T) - 1\right]^{-1}$$

Relaxation time approximation (RTA) of linearized Boltzmann transport equation (LBTE)

$$\kappa = \frac{1}{3} \sum_{\mathbf{q}s} c_{\mathbf{q}s} v_{\mathbf{q}s} l_{\mathbf{q}s}$$

$$l_{\mathbf{q}s} = v_{\mathbf{q}s}\tau_{\mathbf{q}s}$$

$$\kappa = \frac{1}{3} \sum_{\mathbf{q}s} c_{\mathbf{q}s} v_{\mathbf{q}s}^2 \tau_{\mathbf{q}s}$$

Application to Si (Diamond Structure)

Si:

- Simple structure with a 2-atom primitive cell

- Anharmonicity is not strong

- Neutron scattering data is available

Ab initio MD simulation details

PBE

 $4 \times 4 \times 4$ supercells (128 atoms) NVT ensemble dt = 1 fs Simulation time = 50 ps Nosé dynamics

T-dependent phonon dispersions and vibrational density of states (VDoS)

@ constant V

@ constant V

@ constant V

neutron scattering exp: PRB 28, 1928 (1983). APL 41, 1016 (1982).

Application to MgSiO₃ Pv (weakly anharmonic)

MgSiO₃ Perovskite (MgPv): most abundant phase of the LM (**75 vol%**)

Pbnm space group (20 atoms / primitive cell)

MgPv

Ab initio MD simulation details

LDA

 $2 \times 2 \times 2$ supercells (160 atoms) *NVT* ensemble dt = 1 fs Simulation time = 60 ps Nosé dynamics

MgPv

Experimental Results: Six Raman active modes with irregular thermal shifts under 700 K.

Durben and Wolf, American Mineralogist (1992). Gillet et al, Physics of the Earth and Planetary Interiors (2000). Lu et al, J. Geophys. Res. (1994).

Zhang et al., PRL (2014)

Fourier interpolation

 $\Omega_{\mathbf{q}} = \operatorname{diag}[\widetilde{\omega}_{\mathbf{q}1}^{2}, \widetilde{\omega}_{\mathbf{q}2}^{2}, \dots, \widetilde{\omega}_{\mathbf{q}3N}^{2}]$ $\widetilde{D}(\mathbf{q}) = \widehat{\mathbf{e}}_{\mathbf{q}} \Omega_{\mathbf{q}} \widehat{\mathbf{e}}_{\mathbf{q}}^{\dagger}$ $\widetilde{\Phi}(\mathbf{r}) = \sum_{\mathbf{r}} \widetilde{D}(\mathbf{q}) \cdot e^{i\mathbf{q}\cdot\mathbf{r}}$ $\widetilde{D}(\mathbf{q}') = \sum_{\mathbf{r}} \widetilde{\Phi}(\mathbf{r}) \cdot e^{-i\mathbf{q}'\cdot\mathbf{r}}$

Zhang et al., PRL (2014)

Fourier interpolation

$2 \times 2 \times 2 \rightarrow 10 \times 10 \times 8$ **q**-mesh for accurate free energy evaluation

Zhang et al., PRL (2014)

Saturation of κ_{lat} at high T

Saturation of κ_{lat} at high T

Minimal Mean Free Path Theory

$$\kappa_{\text{lat}} = \frac{1}{3} \sum_{q,s} c_{q,s} v_{q,s} \ell_{q,s} \ge \text{Lattice parameters}$$

- Kittel, Phys. Rev. (1948).

- Ziman, Electrons and Phonons (New York 1960).
- Spitzer, J. Phys. Chem. Solids (1970).

Breakdown of Minimal Mean Free Path Theory

Lattice parameters of *Pbnm* crystal: **a**₀, **b**₀, **c**₀

Zhang et al., PRB (2017)

Application to MgSiO₃ PPv (weakly anharmonic)

MgSiO₃ Postperovskite (MgPPv)

 $MgPv \rightarrow MgPPv$ above 125 GPa and 2500 K MgPPv: most abundant phase in the lowermost mantle (D" region)

Cmcm space group (20 atoms / unit cell): layered structure Monolinic 10-atom primitive cell

MgPPv

Ab initio MD simulation details

LDA

 $3 \times 3 \times 2$ supercells (180 atoms) *NVT* ensemble dt = 1 fs Simulation time = 50 ps Nosé dynamics
MgPPv

Weakly anharmonic

$$\kappa(V,T)$$

$$\kappa = \kappa_{ref} \left(\frac{T_{ref}}{T}\right)^a \left(\frac{V_{ref}}{V}\right)^g$$

$$g = b \ln\left(\frac{V_{ref}}{V}\right) + c$$

Using the quasiharmonic EoS:

$$\kappa(V,T) \to \kappa(P,T)$$

 κ depends linearly on pressure

Modeling of κ_{MgPPv} and κ_{MgPv} along the geotherm

 κ_{MgPPv} is ~25% larger

Free energy and thermodynamics calculations

The quasi-harmonic approximation (QHA) formula is no longer valid:

$$F(T) = E_0 + \frac{1}{2} \sum_{\mathbf{q}s} \hbar \omega_{\mathbf{q}s} + k_{\mathrm{B}}T \sum_{\mathbf{q}s} \ln\left(1 - e^{-\frac{\hbar\omega_{\mathbf{q}s}}{k_{\mathrm{B}}T}}\right)$$

Reason:

- The phonon quasiparticle frequencies are temperature-dependent

Phonon gas model

The formula for vibrational entropy is still valid:

$$S_{\text{vib}}(T) = k_{\text{B}} \sum_{\mathbf{q}s} \left[\left(n_{\mathbf{q}s} + 1 \right) \ln \left(n_{\mathbf{q}s} + 1 \right) - n_{\mathbf{q}s} \ln n_{\mathbf{q}s} \right]$$
$$n_{\mathbf{q}s} = \left[\exp(\hbar \widetilde{\omega}_{\mathbf{q}s}(T) / k_{\text{B}} T) - 1 \right]^{-1}$$

Helmholtz free energy (insulators):

$$F(T) = E_0 + \frac{1}{2} \sum_{\mathbf{q}s} \hbar \omega_{\mathbf{q}s} - \int_0^T S_{\text{vib}}(T') dT'$$

 E_0 is the static energy, $\omega_{\mathbf{q}s}$ are the harmonic frequencies.

$$S_{\text{vib}}(T) = k_{\text{B}} \sum_{\mathbf{q}s} [(n_{\mathbf{q}s} + 1) \ln(n_{\mathbf{q}s} + 1) - n_{\mathbf{q}s} \ln n_{\mathbf{q}s}]$$

$$n_{\mathbf{q}s} = [\exp(\hbar \widetilde{\omega}_{\mathbf{q}s}(T) / k_{\text{B}}T) - 1]^{-1}$$
$$\widetilde{\omega}_{\mathbf{q}s}(T) \to \omega_{\mathbf{q}s}$$

$$F(T) = E_0 + \frac{1}{2} \sum_{\mathbf{q}s} \hbar \omega_{\mathbf{q}s} - \int_0^T S_{\text{vib}}(T') dT'$$
$$\mathbf{\hat{f}}$$
$$F(T) = E_0 + \frac{1}{2} \sum_{\mathbf{q}s} \hbar \omega_{\mathbf{q}s} + k_B T \sum_{\mathbf{q}s} \ln\left(1 - e^{-\frac{\hbar \omega_{\mathbf{q}s}}{k_B T}}\right)$$

Anharmonic thermodynamic properties

Z. Zhang et al., PRB **106**, 054103 (2022).

PHQ and QHA comparison

Black: QHA

Z. Zhang et al., PRB **106**, 054103 (2022).

MgPv-PPv phase boundary

Z. Zhang *et al.*, PRB **106**, 054103 (2022).

MgPv-PPv phase boundary

Z. Zhang *et al.*, PRB **106**, 054103 (2022).

Application to CaSiO₃ Pv (strongly anharmonic)

CaSiO₃ perovskite (CaPv):

Third most abundant mineral in the lower mantle: **~7 vol%**

More abundant in subducted mid-ocean ridge basalt (MORB): \geq 23 vol%

Challenge for CaPv

- Kurashina et al., Phys. Earth Planet. Inter. (2004).

500 а Challenge for CaPv 14 Compressional-wave velocity (km s⁻¹) 13 -Thermal elasticity 12 -11 -Gréaux et al., Nature (2019). *P* < 23 GPa, *T* < 1700 K 10 Thomson et al., Nature (2019). *P* < 16 GPa, *T* < 1500 K 0 b 8.0 Measured shear moduli are substantially lower than 7.5 theoretical predictions. 7.0 6.5

Challenge for CaPv

Cubic phase:

- Ground-state double-well potential
- *Ab initio* phonon dispersions have imaginary frequencies

Stixrude et al., Am. Mineral. (1996).

CaPv

Ab initio MD simulation details

LDA *NVT* ensemble *dt* = 1 fs Simulation time = 60 ps Nosé dynamics

Real space:

The distribution of atomic displacements of O atom 0.0 of cubic **CaPv** from MD simulations

Sun et al., PRB (2014)

Phonon quasiparticle emerges at 600 K (at ~26 GPa) \rightarrow CaPv is dynamically stable.

Phonon quasiparticle emerges at 600 K (at ~26 GPa) \rightarrow CaPv is dynamically stable.

Good agreement with EXPs:

- Komabayashi et al., Earth Planet. Sci. Lett. (2007).
- Ono et al., Am. Mineral. (2004).
- Kurashina et al., Phys. Earth Planet. Inter. (2004).

Subminimal mean free path

κ of CaPv

$\kappa(V,T)$

$$\kappa = \kappa_{ref} \left(\frac{T_{ref}}{T}\right)^a \left(\frac{V_{ref}}{V}\right)^g$$

$$g = b \ln\left(\frac{V_{ref}}{V}\right) + c$$

a = 1.11

Z. Zhang et al., PRB **104**, 184101 (2021).

κ of CaPv

 $\kappa(P,T)$

Z. Zhang *et al.*, PRB **104**, 184101 (2021).

κ_{CaPv} along the geotherm

Geotherm:

Stacey et al., Physics of the Earth 4th edition (2008).

Z. Zhang et al., PRB **104**, 184101 (2021).

κ of the lower mantle

Pyrolite mantle:

With CaPv: 7 vol% CaSiO₃ + 75 vol% (Mg,Fe)SiO₃ + 18 vol% (Mg,Fe)O

Without CaPv: 82 vol% (Mg,Fe)SiO₃ + 18 vol% (Mg,Fe)O

Voigt-Reuss-Hill averaging scheme

Estimation of κ of the lower mantle

Z. Zhang et al., PRB **104**, 184101 (2021).

Free energy and thermodynamics calculations The quasi-harmonic approximation formula is no longer valid:

$$F = E_0 + \sum_{\mathbf{q}s} \frac{1}{2} \hbar \omega_{\mathbf{q}s} + k_B T \sum_{\mathbf{q}s} \ln \left(1 - e^{-\frac{\hbar \omega_{\mathbf{q}s}}{k_B T}} \right)$$

For two reasons:

- The phonon quasiparticle frequencies are intrinsically temperature-dependent
- The phonon quasiparticles of the cubic phase are not well-defined at low temperatures

Phonon gas model

The formula for vibrational entropy is still valid:

$$S_{vib}(T) = k_B \sum_{\mathbf{q}s} \left[\left(n_{\mathbf{q}s} + 1 \right) \ln \left(n_{\mathbf{q}s} + 1 \right) - n_{\mathbf{q}s} \ln n_{\mathbf{q}s} \right]$$
$$n_{\mathbf{q}s} = \left[\exp(\hbar \widetilde{\omega}_{\mathbf{q}s}(T) / k_B T) - 1 \right]^{-1}$$

Helmholtz free energy:

$$F(V,T) = E(V,T_0) - T_0 S_{vib}(V,T_0) - \int_{T_0}^T S_{vib}(T') dT'$$

The reference temperature T_0 = 1500 K

 $E(V, T_0)$ is the time-averaged internal energy obtained from the MD simulation at T_0 .

Anharmonic phonon dispersions and vibrational density of states (VDoS)

Vibrational entropy: Free energy:

Pressure:

Z. Zhang et al., PRB **103**, 104108 (2021).

Anharmonic thermodynamic properties

Z. Zhang et al., PRB 103, 104108 (2021).

Comparison

Solid: PHQ Dash-dotted: Mie-Grüneisen-Debye formulation

Z. Zhang et al., PRB 103, 104108 (2021).

Application to bcc/hcp Be (strongly anharmonic metal)

- Radiation windows: because of its low atomic number and very low absorption for X-rays.
- Lightweight structural components in high-speed aircraft, spacecraft, and satellites.
- Nuclear application: used to surround the fissile material.
- Neutron sources in laboratory devices.

Ab initio MD simulation details

PBE

Mermin functional $4 \times 4 \times 4$ supercells (128 atoms) *NVT* ensemble dt = 1 fs Simulation time = 50 ps Nosé dynamics

The bcc structural is unstable at low temperatures. Phonon quasiparticles of bcc Be are well-defined above 1000 K.

Lu et al., PRL (2017)

Helmholtz free energy:

 $F(V,T) = E(V,T_0) - T_0 S_{ele}(V,T_0) - T_0 S_{vib}(V,T_0) - \int_{T_0}^T S_{ele}(T') dT' - \int_{T_0}^T S_{vib}(T') dT'$

The reference temperature $T_0 = 1000$ K $E(V, T_0)$ is the time-averaged internal energy obtained from the MD simulation at T_0 .

E and S_{ele} can be obtained from *ab initio* calculations software. S_{vib} can be computed from the quasiparticle spectra.

Lu et al., PRL (2017)

Phase diagram of pre-melting bcc/hcp Be

Hands-on: phq code

https://github.com/MineralsCloud/phq

Zhang et al. Comput. Phys. Commun. (2019)

Phonon quasiparticle approach

Mode-projected Velocity Autocorrelation Function (VAF):

cubic diamond Si as an example

Ab initio MD:

 $4 \times 4 \times 4$ supercells (128 atoms)

Ab initio harmonic phonons:

 $4 \times 4 \times 4$ **q**-mesh

The q-points sampling for the harmonic phonon calculations should be **commensurate** with the supercell size.

Input files

Zhang et al. Comput. Phys. Commun. (2019)

scf.out

ntype = 1 Nu	umber of elements
natom = 2 Nu	umber of atoms
mass Si 28.0855	Element name followed by the mass
lattice_paramete	r = 10.370817020 Lattice parameter in Bohr radius
cell_parameters 0.000000000 0.500000000 0.500000000	0.50000000 0.50000000 Lattice vectors scaled by the lattice parameter 0.00000000 0.500000000 Lattice vectors scaled by the lattice parameter 0.00000000 0.500000000 Lattice vectors scaled by the lattice parameter
atomic_positions Si 0.00000000 Si 0.25000000	0 0.00000000 0.00000000 Atomic positions in crystal coordinates

Dynamical matrix file

1 2 0 1 Basis vectors 0.00000 0.50000 0.50000 1 1 1 2 1	0.3708170 0.4 0000 0.500 0000 0.000 'Si ' 25 0.0000000 0.25000000	0000000 0.00 000000 0.5 000000 0.5 000000 0.6 598.367262405 00 0.000 00 0.250	00000 0.000 00000000 00000000 00000000 9 0000000	0000 0.000000 0.0000000000 0.2500000000	0 0.0000000
Dynamica	l Matrix in	cartesian axe	S		
q = (0.000000000	0.00000000	0.000000	00)	
$ \begin{array}{c} 1 & 1\\ 0.27105449\\ 0.0000000\\ 0.0000009\\ 1 & 2\\ -0.27078210\\ -0.00000003\\ -0.00000000\\ 2 & 1\\ -0.27078210\\ -0.0000004\\ 0.00000000\\ 2 & 2\\ 0.27076057\\ -0.00000013\\ 0.0000002 \end{array} $	0.00000000000000000000000000000000000	0.0000000 0.27105474 0.00000005 -0.00000004 -0.27078168 0.00000001 -0.27078168 0.00000001 -0.27078168 0.00000001 -0.00000013 0.27076084 0.00000004	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	0.0000009 0.0000005 0.27105465 0.00000000 0.00000001 -0.27078187 -0.00000000 0.00000001 -0.27078187 0.00000002 0.00000004 0.27076071	0.00000000000000000000000000000000000
Dielectr 23.3 -0.0 0.0	ic Tensor: 56590536997 00010138151 00002080351	-0.000 23.356 0.000	010192749 590677250 014287566	0.00000 0.00001 23.35659	2086388 4240984 4216403
Effectiv	e Charges E-U	: Z_{alpha}{s	,beta}		
atom # -1.1 0.0 -0.0 atom #	1 39812312715 00000394149 00000498373 2	0.000 -1.139 -0.000	000103754 812558977 001182086	-0.00000 -0.00000 -1.13981	0410345 1034242 2871792

om # 2		
-1.140677552970	0.000001193733	0.00000248824
0.000001138321	-1.140677456367	-0.000001203593
0.00000160442	-0.00000861857	-1.140678533945

Effective Charges U-E: Z_{s,alpha}{beta}

atom # 1

...

-0.113982806114E+01	0.587992782082E-06	-0.166911820747E-06
0.198030409404E-06	-0.113982227168E+01	-0.126084144858E-05
-0.218511522654E-06	-0.109703644124E-05	-0.113982838261E+01
atom # 2		
-0.114069392591E+01	0.941325949834E-06	-0.134977341103E-06
0.938413025064E-06	-0.114068866787E+01	-0.115859147742E-05
-0.656572640700E-07	-0.107594584664E-05	-0.114069435079E+01

Diagonalizing the dynamical matrix

q = (0.00000000 0.0000000 0.0000000 0)

	freq (1) =	0.230231 [THz] = 7.679670 [cm-1]	
(0.691018	0.000000	0.107566 0.000000 -0.103212 0.000000)	
(0.691393	0.000000	0.107624 0.000000 -0.103268 0.000000)	
	freq (2) =	0.230598 [THz] = 7.691912 [cm-1]	
(-0.117487	0.000000	0.091697 0.000000 -0.691026 0.000000)	
(-0.117551	0.000000	0.091747 0.000000 -0.691401 0.000000)	
	freq (3) =	0.230898 [THz] = 7.701920 [cm-1]	
(-0.091760	0.000000	0.692640 0.000000 0.107512 0.000000)	
(-0.091810	0.000000	0.693016 0.000000 0.107571 0.000000)	
	freq (4) =	15.133665 [THz] = 504.804713 [cm-1]	
(0.188638	0.000000	0.613826 0.000000 -0.296487 0.000000)	
(-0.188536	0.000000	-0.613493 0.000000 0.296326 0.000000)	
	freq (5) =	15.133666 [THz] = 504.804762 [cm-1]	
(-0.238099	0.000000	0.347584 0.000000 0.568125 0.000000)	
(0.237970	0.000000	-0.347395 0.000000 -0.567816 0.000000)	
	freq (6) =	15.133668 [THz] = 504.804811 [cm-1]	
(-0.638745	0.000000	0.051713 0.000000 -0.299335 0.000000)	
(0.638399	0.000000	-0.051685 0.000000 0.299172 0.000000)	
*	*****	*******	**************************************	**

dyn.out is simply a concatenation of all the output dynmat files by ph.x of Quantum ESPRESSO package.

\$ cat dynmat* > dyn.out

Total number of *ab initio* MD steps

atomic_positions

Si	0.000000000	0.000000000	0.0000000000
Si	0.0625000000	0.0625000000	0.0625000000
Si	0.2500000000	0.000000000	0.0000000000
Si	0.3125000000	0.0625000000	0.0625000000
Si	0.500000000	0.000000000	0.0000000000
Si	0.5625000000	0.0625000000	0.0625000000
Si	0.7500000000	0.000000000	0.0000000000
Si	0.8125000000	0.0625000000	0.0625000000
Si	0.000000000	0.2500000000	0.0000000000
Si	0.0625000000	0.3125000000	0.0625000000
Si	0.2500000000	0.2500000000	0.0000000000
Si	0.3125000000	0.3125000000	0.0625000000
Si	0.500000000	0.2500000000	0.000000000
Si	0.5625000000	0.3125000000	0.0625000000

Equilibrium atomic positions in crystal coordinates of the supercell

•••

md_step = 5000 Step

atomi	c_md_positions			
Si	0.9818033400	0.0143762200	0.9946054700	Atomic positions during the MD in
Si	0.0404658700	0.0934023800	0.0516911600	A conne posicions daring the MD in
Si	0.2226678000	0.0006252700	0.0115934000	crystal coordinates of the supercell
Si	0.2730537700	0.0664646000	0.0848089300	crystal coordinates of the supercen
Si	0.4630747600	0.0178188900	0.0122942300	
Si	0.5401123300	0.0498953600	0.0898588100	
Si	0.7395603700	0.0033935100	0.0043052400	
Si	0.7924060400	0.0673239000	0.0735076200	
Si	0.9947108400	0.2859514400	0.9839587600	
Si	0.0656859700	0.3279744000	0.0588671000	
Si	0.2484133500	0.2476844600	0.0083361200	
Si	0.3155499000	0.2918325400	0.0877569500	
Si	0.5052480300	0.2315406000	0.0168115200	
Si	0.5688188700	0.2985122700	0.0651846800	

	_		_		L.	
m	n		\mathbf{n}		Т	
	u	•	U	u	L	
			-		-	

atomic	_md_positions				atomic	_md_positions			
Mg	0.011012016	0.019655128	0.077218163		Mg	0.011012016	0.019655128	0.077218163	
Mg	0.175065423	0.174730483	0.092286993		Mg	0.175065423	0.174730483	0.092286993	
Mg	-0.006628746	-0.012158547	-0.087891385		Mg	-0.006628746	-0.012158547	-0.087891385	
Mg	-0.167425371	-0.181918657	-0.082751697		Mg	-0.167425371	-0.181918657	-0.082751697	All Mg atoms
Si	-0.002219084	0.160746545	-0.000420259		Mg	0.329400469	0.026607094	0.086048913	
Si	0.173324080	0.003789656	-0.002351856		Mg	0.511185457	0.192406690	0.094622939	
Si	-0.001711452	0.156018865	0.166685758						
Si	0.172916863	-0.004894948	0.171334876						
0	0.066899064	0.065512639	-0.020189318		Si	-0.002219084	0.160746545	-0.000420259	
0	0.237397581	0.100584987	0.013362569	1 st primitive	Si	0.173324080	0.003789656	-0.002351856	
0	0.107805148	0.237085282	-0.014012816	cell	Si	-0.001711452	0.156018865	0.166685758	
0	0.276499047	0.264195775	0.023048409		Si	0.172916863	-0.004894948	0.171334876	All Si atoms
0	0.060545825	0.066580562	0.186499379		Si	0.333278727	0.171353846	0.008191164	
0	0.237425805	0.098108784	0.157168078		Si	0.496563199	-0.009279888	0.002358487	
0	0.101975395	0.229736145	0.186048941						
0	0.271668673	0.260684022	0.145131366						
0	0.033189446	0.152985168	0.086405985		0	0.066899064	0.065512639	-0.020189318	
0	0.152673298	0.003449583	0.084545041		0	0.237397581	0.100584987	0.013362569	
0	-0.038684585	-0.169063540	-0.082631003		0	0.107805148	0.237085282	-0.014012816	
0	0.193678933	0.004503128	-0.081978340)		0	0.276499047	0.264195775	0.023048409	
Mg	0.329400469	0.026607094	0.086048913		0	0.060545825	0.066580562	0.186499379	All O atoms
Mg	0.511185457	0.192406690	0.094622939		0	0.237425805	0.098108784	0.157168078	All O atoms
Mg	0.338549894	-0.007500880	-0.076490007	2 nd primitive	0	0.101975395	0.229736145	0.186048941	
Mg	0.154239361	-0.190945762	-0.081472078	cell	0	0.271668673	0.260684022	0.145131366	
Si	0.333278727	0.171353846	0.008191164		0	0.033189446	0.152985168	0.086405985	
Si	0.496563199	-0.009279888	0.002358487		0	0.152673298	0.003449583	0.084545041	
			1						

Correct

input

dt step_md_use correlation_time pole supercell temperature method 20.67055273 50000 1000 1000 4 4 4 900

Quasiparticle properties obtained by which method to construct \widetilde{D} : 0: curve fitting (recommended) $\langle V_{\mathbf{q}s}(0) \cdot V_{\mathbf{q}s}(t) \rangle = A_{\mathbf{q}s} \cos(\widetilde{\omega}_{\mathbf{q}s}t) e^{-\Gamma_{\mathbf{q}s}t}$

1: Fourier transform $G_{\mathbf{q}s}(\omega) = \left| \int_{0}^{\infty} \langle V_{\mathbf{q}s}(0) \cdot V_{\mathbf{q}s}(t) \rangle e^{i\omega t} dt \right|^{2}$ Time step for MD in Rydberg atomic unit, 1 a.u. = 4.8378 * 10^-17 s

Number of MD steps to use for the phq code

Correlation time in dt to calculate for the VAF

Parameter used in the maximum entropy method to filter high-frequency components. Usually a reasonable range (200 – 2000) can yield smooth spectrum.

Supercell size

• Temperature of the MD

2: maximum entropy method, also yields Lorentzian spectrum

Get phq

You can get phq from github

\$ git clone https://github.com/MineralsCloud/phq

Compile phq

If you are using gfortran compiler on Linux machine

\$ mv makefile_linux_gfortran makefile
\$ make

If you are using ifort compiler on Linux machine

\$ mv makefile_linux_ifort makefile
\$ make

Run phq

phq is a serial Fortran code

\$./phq < input

Output files

$\widetilde{\omega}$ by curve

Mod	de #	Harmonic ω	fitting	$\widetilde{\omega}$ by FT	$\widetilde{\omega}$ by MEM
	4	504.804735	484.491418	486.615909	484.609477
Renormalized frequencies	5	504.804768	483.889308	485.843363	484.776267
Renormalized requercies	6	504.804835	485.847867	489.105830	485.610219
	7	96.061524	88.830309	90.062307	89.149463
	8	96.062358	89.105390	90.062307	89.232858
	9	223.738687	216.332499	218.484486	216.577321
	10	476.705195	457.364850	458.650638	457.255853
	11	482.333789	464.307776	465.977662	465.011606
	12	482.333922	463.673250	465.139461	463.427097
froquoncyfroq	13	110.902625	101.037919	103.404871	101.158371
nequency.neq	14	110.903325	101.621254	103.404871	101.658742
	15	377.603067	361.358033	361.917049	361.684960
	16	387.334900	378.419440	378.595254	379.114555
	17	471.069229	454.091228	456.097851	452.418932
	18	471.069529	450.608065	453.266532	451.168004
	19	96.061524	88.830309	90.062307	89.149463
	20	96.062358	89.105390	90.062307	89.232858
	21	223.738687	216.332499	218.484486	216.577321
	22	476.705195	457.364850	458.650638	457.255853
	23	482.333789	464.307776	465.977662	465.011606
	24	482.333922	463.673250	465.139461	463.427097
	25	96.061157	88.829942	90.062307	89.066068
	26	96.062591	88.920794	90.062307	89.149463
	27	223.736686	216.249209	216.816665	216.410530
	28	476.704694	458.551872	458.650638	457.923014
	29	482.333755	463.538958	465.389306	465.011606
	30	482.334056	464.615313	466.567507	465.678768

Output files

Effective harmonic dynamical matrices

Dynamical matrix file

1 2 0 1 Pasis vectors	0.370817020	0.0000000 0.	0000000 0.0	000000 0.000	0000 0.0000000				
0.000000	,)000 0.50(0000000 0.	500000000						
0.500000	000 0.000	0000000 0.	500000000						
0.500000	0000 0.500	0000000 0.	000000000						
1	'si ' 2!	5598.367262405	9						
1 1	0.0000000	000 0.000	0000000	0.000000000					
2 1	0.2500000	000 0.250	0000000	0.2500000000					
Dynamica	Dynamical Matrix in cartesian axes								
q = (0.00000000	0.000000000	0.0000000	00)					
1 1									
0.25075481	0.00000000	0.00001014	0.00000000	0.00070269	0.00000000				
0.00001014	0.00000000	0.24954185	0.0000000	-0.00028793	0.0000000				
0.00070269	0.00000000	-0.00028793	0.0000000	0.24953501	0.00000000				
1 2	0 0000000	0 00001000	0 0000000	0 00070010	0.0000000				
-0.25049307	0.00000000	-0.00001028	0.00000000	-0.000/0218	0.00000000				
	0.00000000	-0.24920041	0.00000000	_0 2/027361	0.00000000				
2 1	0.00000000	0.00020797	0.00000000	-0.24927301	0.0000000				
-0.25049367	0.00000000	-0.00001030	0.00000000	-0.00070224	0.0000000				
-0.00001028	0.00000000	-0.24928041	0.00000000	0.00028797	0.0000000				
-0.00070218	0.00000000	0.00028791	0.0000000	-0.24927361	0.0000000				
22									
0.25048339	0.00000000	0.00001023	0.00000000	0.00070183	0.0000000				
0.00001023	0.00000000	0.24927119	0.00000000	-0.00028783	0.0000000				
0.00070183	0.00000000	-0.00028783	0.0000000	0.24926381	0.00000000				
Dielectr	ric Tensor:	1	•						
$\widetilde{D}(\mathbf{q}) = \widehat{\mathbf{e}}_{\mathbf{q}} \Omega_{\mathbf{q}} \widehat{\mathbf{e}}_{\mathbf{q}}^{\dagger}$									
where $\Omega = \text{diag}[\widetilde{\alpha}^2 \ \widetilde{\alpha}^2 \ \widetilde{\alpha}^2 \]$									
	WIICIC, 34	-q – ulag	L ω q $1, \omega$ c	1 2,, wq 3	NJ				

Anharmonic phonon dispersion / VDoS from dynmatmd

				&input			
	q2r.in		matdyn.in	asr =	'simp	le',	
) (flfrc	= 'fc	', ·	
				flfrq	= 'fr	eq',	
&input				q_in_	band_f	orm = ,	.true. ,
zasr	= 'simple'	• .		q_in_	cryst_	coord =	= .true.
fildv	n = 'dynmatrix	atmd'		/			
flfrc		,		10			
,	- 10			0	0	0	50
/				0	0.5	0.5	50
				0.25	0.75	0.5	50
				0.375	0.75	0.375	50
				0	0	0	50
S a2r	r.x < a2r.	in		0.5	0.5	0.5	50
+ - I				0.25	0.625	0.625	50
				0.25	0.75	0.5	50
$\widetilde{\Phi}(\mathbf{n}) =$	$\sum \widetilde{D}(a)$	_i q ·r		0.5	0.5	0.5	50
$\Psi(\mathbf{I}) =$	$\sum D(\mathbf{q})$	e		0.375	0.75	0.375	1
	r		¢ mat	dyn y a	< mat		in
			ې ۱۱۵۱	uyn.x <	s IIIdl	uyii.	188
			$\widetilde{D}(\mathbf{a})$	$() - \nabla$	$\widetilde{\Phi}(\mathbf{r})$	$-i\mathbf{q'}\cdot\mathbf{r}$	
			$D(\mathbf{q})$	I = I	$\Psi(\mathbf{I})$	· •	

r

How to get anharmonic phonon dispersion

In the example/Si/postprocessing/dispersion folder: q2r.in, dispersion.in, plotband.in

- \$ q2r.x < q2r.in > q2r.out
- \$ matdyn.x < dispersion.in > dispersion.out
- \$ plotband.x < plotband.in > plotband.out

Thank you!

Extreme Science and Engineering Discovery Environment