Spin crossovers in iron in lower mantle phases

Renata Wentzcovitch

Applied Physics and Applied Mathematics

Lamont Doherty Earth Observatory, Columbia University

1D-Seismic Model

Making sense of mantle heterogeneities (Seismic Tomography) S-model

Parameter: vs | depth: 1500 km | ref: mean | threshold: <6.63 (dashed red), >6.73 (solid blue)

GLAD-M25 δV_s

(Lei, Tromp, et al., 2021)

Thermochemical convection (need ρ , K, α , C_P, μ , κ)

(McNamara et al., 2014)

The Big Picture

Earth's lower mantle

Body wave (acoustic) velocities

• Longitudinal waves (P-waves) (compressive waves)

•Transverse waves (S-waves) (shear waves)

Pressure induced spin "transition" in (Mg,Fe)O and (Mg,Fe)SiO₃

Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity

James Badro,¹ Guillaume Fiquet,¹ François Guyot,¹ Jean-Pascal Rueff,² Viktor V. Struzhkin,³ György Vankó,⁴ Giulio Monaco⁴ 2003

2004

Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle

James Badro,¹* Jean-Pascal Rueff,² György Vankó,³ Giulio Monaco,³ Guillaume Fiquet,¹ François Guyot¹

Outline

- Spin crossovers
- Thermodynamics model of a spin crossover: (Mg,Fe)O
- (Mg,Fe)SiO₃ (it is not what it seems...)
- Spin crossover in (Mg,Fe)(Si,Fe)O₃ and (Mg,Fe)(Si,Al)O₃
- Manifestation of a crossover in the mantle
- Acknowledgments

Methods

- Ab initio variable cell shape molecular dynamics (Wentzcovitch and Martins, 1993)*
- Self-consistent DFT+U (Cococcioni and de Gironcoli, 2005)
- Density Functional Perturbation Theory + U for phonons (Floris, de Gironcoli, Gross, Cococcioni, 2011)
- Quantum ESPRESSO and Wien2K (all electron code) (Giannozzi, ..., Wentzcovitch, 2009*, 2016; Blaha et al., 2010)
- QHA to compute vibrational free energy (Karki, Wentzcovitch, de Gironcoli, Baroni, 2000)*
- Semi-analytical method to compute acoustic velocities (Wu & Wentzcovitch, 2011)*
- Quasi-ideal solid solution (Wu, Justo, da Silva, Wentzcovitch, 2009)*

Spin transition (or crossover) Fe²⁺ 3d⁶

Ferropericlase

ρ_{el} around Fe²⁺ (Isosurface: ρ_{el} =0.3 e/Å³)

 ΔV_{oct} ~-8%

HS-to-LS "transition"

Tsuchiya, de Gironcoli, da Silva, and Wentzcovitch, PRL (2006)

Static equation of state

Tsuchiya et al., PRL (2006) $\Delta V_{HS-LS} = -2.22 \text{ nX}_{Fe} \text{ cm}^3/\text{mol}$

Thermodynamics

Thermodynamics Method

• VDoS and F(T,V) within the QHA

$$F(V,T) = E(V) + \sum_{qj} \frac{\hbar \omega_{qj}(V)}{2} + k_B T \sum_{qj} \ln \left(1 - \exp \left[-\frac{\hbar \omega_{qj}(V)}{k_B T} \right] \right)$$

N-th (N=3,4,5...) order *isothermal* (eulerian or logarithm) finite strain EoS

$$G = F - TS + PV$$

Free energy minimization

LS fraction n(P,T)

(Tsuchiya et al., 2006, Wentzcovitch et al., PNAS, 2009)

Spin crossover in ferropericlase (Fp)

- One really needs to investigate the EOS of Fp at high T.
- The pressure range of K_s anomalies increases with T
- It also shifts crossover pressure range to higher P

Wentzcovitch, Justo, Wu, da Silva Yuen, Kohlstedt, *PNAS* 2009

Volume V(P,T) for $x_{Fe} = 18.75\%$ 12 300 K x_F= 18.75% 1000 K + 300K (exp.) 2000 K 3000 K V (cm³/mol) 4000 K 10 + 300K (exp.) 8 50 150 100P (GPa) + Experiments (Lin et al., Nature, 2005) (x_{Fe}=17%, RT)

Thermodynamics properties $x_{Fe} = 18.75\%$

Elastic anomalies in Mg_{1-x}Fe_xO

Impulsive stimulated scattering: softening of C₁₁, C₁₂, and C₄₄ (Crowhurst et al., 2008, Science)

Brillouin scattering: softening of C₁₁ and C₁₂, but not C₄₄ (Marquardt et al., 2009, Science)

Inelastic X-ray scattering: softening of C₄₄ and C₁₂, but not C₁₁ (Antonangelli et al., 2011, Science)

High temperature elasticity

(Wentzcovitch et al., PNAS 2009; Wu, Justo, and Wentzcovitch, PRL 2013)

$$V(P,T,n) = nV_{LS}(P,T) + (1-n)V_{HS}(P,T)$$

High temperature elasticity

(Wentzcovitch et al., PNAS 2009; Wu, Justo, and Wentzcovitch, PRL 2013)

$$V(P, T, n) = nV_{LS}(P, T) + (1 - n)V_{HS}(P, T)$$

Compressibility:

$$\frac{V(n)}{K(n)} = n \frac{V_{LS}}{K_{LS}} + (1-n) \frac{V_{HS}}{K_{HS}} - (V_{LS} - V_{HS}) \frac{\partial n}{\partial P} \Big|_{T}$$

High temperature elasticity

(Wentzcovitch et al., PNAS 2009; Wu, Justo, and Wentzcovitch, PRL 2013)

$$V(P, T, n) = nV_{LS}(P, T) + (1 - n)V_{HS}(P, T)$$

Compressibility:

$$\frac{V(n)}{K(n)} = n \frac{V_{LS}}{K_{LS}} + (1-n) \frac{V_{HS}}{K_{HS}} - (V_{LS} - V_{HS}) \frac{\partial n}{\partial P} \Big|_{T}$$

Compliances:

$$S_{ij}(n)V(n) = nS_{ij}^{LS}V_{LS} + (1-n)S_{ij}^{HS}V_{HS} - \frac{1}{9}\alpha_{ij}(V_{LS} - V_{HS})\frac{\partial n}{\partial P}\Big|_{T}$$

$$\alpha_{11} = \alpha_{12} = 1 | \alpha_{44} = 0$$

High Temperature Elastic Tensor

Karki et al., Science (1999), Wentzcovitch et al., PRL (2004)

10 volumes x 10 q-points x 10 strains = 1000 independent HPC tasks

High throughput calculations

Elastic anomalies in ferropericlase - I

Spin Crossovers in bridgmanite

 (Fe^{+2})

(Fe⁺³)

"New" species of Fe²⁺: IS?

• At 0 GPa: HS state with QS = 2.4 mm/sec

•"New" Fe²⁺ (QS = 3.5 mm/s) for P > 30 GPa

• Fe²⁺ QS = 3.5 mm/s increases at the expense of the HS Fe²⁺ (QS = 2.4 mm/s)

• The two sets of peaks "merge" at P ~ 60 GPa

McCammon et al. Nature Geoscience (2008)

HS and LS configurations at 0 GPa

 x_{Fe} = 0.25 and 0.125

Hsu, Umemoto, Blaha, and Wentzcovitch, EPSL 2009

The double-well with LDA+U_{sc}

Spin Crossover in Perovskite

 (Fe^{+3})

What we know:

Catalli *et al*., EPSL (2010)

Relative Enthalpies (U_{SC})

 $P_{\rm T}$ observed in XES: 50-60 GPa

Hsu *et al*., PRL (2011)

Spin Crossovers in bridgmanite

Spin crossover in aluminous Pv

Hsu, Yu, and Wentzcovitch (EPSL 2012)

Spin crossover in aluminous Pv and PPv

Hsu, Yu, and Wentzcovitch (EPSL 2012)

Consequences for Mantle Structure

Lower Mantle

 $(Mg_{(1-x-z)}, Fe_x, AI_z)(Si_{(1-y)}, AI_y)O_3$

 $(Mg_x, Fe_{(1-x)})O$

Elastic anomalies in ferropericlase - II

Wu and Wentzcovitch, PNAS 2014

Elastic anomalies in ferropericlase - II

Wu and Wentzcovitch, PNAS 2014

Lower mantle aggregate

Wu and Wentzcovitch, PNAS 2014

P = 75 GPa

----- 78% ($Mg_{0.91}Fe_{0.09}$)SiO₃ (MgPv) + 7% CaSiO₃ + 15% $Mg_{0.88}Fe_{0.12}O$

- – – 78% (Mg_{0.91}Fe_{0.09})SiO₃ (MgPv) + 7% CaSiO₃ + 15% Mg_{0.79}Fe_{0.21}O

Predicted effect

Wu and Wentzcovitch, PNAS 2014

Slow (hot) anomaly (plume) with spin crossover

Predicted effect

Wu and Wentzcovitch, PNAS 2014

Slow (hot) anomaly (plume) with spin crossover

Potential seismic signatures of spin crossover

Wu and Wentzcovitch, PNAS 2014

Potential seismic signatures of a spin crossover

Wu and Wentzcovitch, PNAS 2014

Zhao, Gondwana Res. 2007

P-models

Potential seismic signatures of spin crossover

Wu and Wentzcovitch, PNAS 2014

Compositional Heterogeneity in the Bottom 1000 Kilometers of Earth's Mantle: Toward a Hybrid Convection Model

Science

1999

AAAS

Geodynamic/seismological analysis of global models

Boschi, Becker, Steinberger, G³, 2007

Simultaneous analyses of 2 global P-models and 3 global S-models

Boschi, Becker, Steinberger, G³, 2007

 Tomographic S-models can identify ~ 10 continuous slow/hot conduits extending from CMB to surface (plumes), while P-models do not identify a single one!

Can we see the spin transition in the lower mantle? NOT IN PREM but perhaps in ak135! How do tomographic models compare? "VOTE MAPS"

Shephard, Hernlund, Houser, Tronnes, Valencia-Cardona, Wentzcovitch, Nature Communications, in press (2021)

Can we see the spin crossover in the lower mantle? How do tomographic models compare? "VOTE MAPS"

Shepard, Hernlund, Houser, Tronnes, Valencia-Cardona, Wentzcovitch, Nature Communications (2021)

Summary:

- Iron spin crossover (ISC) is not an obvious global feature (1d profile)
- Significant in the fast anomaly (slab) regions from 1,500km 2,000km depth -- Effect of Temperature + Composition(?)
- Observable in the slow anomaly (plume) regions from 1,800km to 2,200km depth. Yet, not as strong as slab regions.
- All these observations requires high-resolution tomographic models.

Future Work:

- GLAD-M35:
- Further modeling for temperatures, pressures, and composition in the lower mantle
- Extract mineralogical and temperature information directly from GLAD-M35

Some Challenges

- ANHARMONIC EFFECTS: temperature dependent phonon frequencies, thermal conductivity, anharmonic free energy, pre-melting behavior, etc...
- SEARCH FOR <u>new phases</u>, particularly with <u>high iron</u> <u>content</u>
- MULTI-PHASE EQUILIBRIUM: address co-existing complex solid solutions (more accurate free energies).

Acknowledgments

- Koichiro Umemoto (ELSI, Tokyo)
- Wenjie Lei (Google)
- Matteo Cococcioni (EPFL, Lausanne)
- Stefano de Gironcoli (SISSA, Trieste)
- Gaurav Shukla (IIT-Kolkata)
- João F. Justo (USP, São Paulo, Brazil)
- Zhongqing Wu (USTC, Hefei)
- Juan Valencia-Cardona (Intel)
- Han Hsu (Taiwan Central University)
- Taku and Jun Tsuchiya (Ehime, Japan)
- Peter Blaha (Vienna, Austria)
- Maribel Núnez-Valdéz (Potsdam, Germany)
- Yonggang Yu (NOAA, USA)
- Pedro da Silveira (Apple Inc.)
- Jingyi Zhuang (Columbia University)

Spin crossover in the lower mantle

nature communications

Shepard, Hernlund, Houser, Tronnes, Valencia-Cardona, Wentzcovitch, Nature Communications, (2021)